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CHAPTER 7
SEEPAGE TOWARD WELLS

7-1. Use of Wells. Wells are used in a variety of ways to control seepage.
They may be placed-on the landward side of water retention structures to
reduce pressure at the lower boundary of impervious strata. Wells are also
used to maintain dry conditions in excavations during construction. In
addition to seepage control, well pumping tests serve as an accurate means of
field determination of permeability (see Chapter 2).

7-2. Analysis of Well Problems. The graphical flow net technique described
in Chapter 4 or the approximate methods described in Appendix B can be used in
the analysis of well problems. However, formulas obtained from analytical
solutions to well problems are the most common methods of analysis.

a. Flow Nets. An example of a flow net for a simple flow problem is
shown in figure 7-1. The flow between flow lines is given by (Taylor 1948)

(7-1)

where

k = permeability (L/T)

= total head loss between equipotential lines (L)

r = distance from well (L)

b = dimension of element in Z direction (L)

= dimension of element in r direction (L)

As for a plan flow net, must be the same for all elements within
the net. Thus is a constant. When drawn in plan view (figure 7-1b)
the flow net consists of square elements as in the plane case described in
Chapter 4. When drawn in profile (figure 7-1c) the elements' aspect ratios
(b/R) are proportional to the radial distance r and are therefore not
squares. Thus, graphical construction of flow nets for radial flow problems
is generally not practical except for cases where the water bearing has a
constant thickness and only the plan view of the net is required.

b. Approximate Solutions.  The numerical and analog methods described
in Appendix C can be used for problems involving complicated boundary condi-
tions. Electrical analog methods are especially advantageous as most compli-
cated well problems cannot be idealized in two dimensions.
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a. HORIZONTAL FLOW TO WELL

b. PLAN VIEW OF FLOWNET

c. PROFILE VIEW OF FLOWNET

Figure 7-1. Flowout of simple radial
flow problem (courtesy of John Wiley

and Sons268)

c. Analytical Formulas. The analysis of flow to a single well can
often be solved by analytical methods. Also, the analysis of flow to multiple
wells and many problems involving complicated boundary conditions can be
solved by superposition of solutions for single well problems. Analytical
solutions can be obtained for nonsteady flow problems.

7-3. Basic Well Equations for Steady State Flow. Steady flow conditions
exist when the well flow rate and piezometric surface do not change with time.
If the regional piezometric surface does not fluctuate, steady state condi-
tions are achieved by pumping from a well at a constant rate for a long time
period. Design of wells for seepage control are often based on computations
assuming steady state conditions.
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a. Artesian Conditions. When significant flow to a well is confined to
a single saturated stratum, the problem can be idealized as shown in fig-
ure 7-2a. An artesian condition exists when the height h of the piezometric
surface lies above the top of the water bearing unit b . If the properties of
the soil are constant in all directions from the well, the discharge Q from
the well must be equal to the flow through a cylinder defined by the radius
r , height b , and differential thickness dr . Thus from Darcy's law
(equation 3-3), the flow can be written as

(7-2)

where

Q = constant discharge from well (L3/T)

k = coefficient of permeability -(L/T)

= hydraulic gradient along radius (L/L)

r = radius of cylinder (L)

B = thickness of aquifer (L)

Upon integrating equation 7-2, the relationship between r and h is found.

(7-3)

The constant can be determined by specifying that at the radius re , the
total head h is equal to a known head H , the total head that existed
before starting discharge from the well. That is,

(7-4)

Inserting equation 7-4 into equation 7-3, the constant term is found to be:
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a. HORIZONTAL AQUIFER CONFINED BETWEEN IMPERVIOUS STRATA
(ARTESIAN FLOW)

b. HORIZONTAL UNCONFINED AQUIFER (GRAVITY FLOW)

c. COMBINED AND CONFINED AND GRAVITY FLOW

Figure 7-2. Radial flow to horizontal aquifers (courtesy of

John Wiley and Sons
164

)
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By substituting the constant term into equation 7-3 and combining logarithmic
terms, the well equation for confined flow is obtained.

(7-5)

The distance re is often defined as the radius beyond which the well has no

influence or radius of influence.

b. Gravity Flow Conditions. Flow to a well under gravity (figure 7-2b)
differs from the confined flow problem in the important aspect that the height
B of the differential cylinder is equal to the variable h . Thus,
equation 7-2 must be written as:

(7-6)

which upon integration and substitution of boundary condition gives

(7-7)

The constant term can be evaluated from the condition at the radius of influ-
ence r e as was done in equations 7-4 and 7-5. The constant term is given
by:

which when substituted back into equation 7-7 gives the well equation for
gravity flow

Development of equation 7-6 is based on the Dupuit assumption (Chapter 4)
which limits the applicability of equation 7-7 to those cases where the slope
of the piezometric surface is small (less than 5 percent). The error is
greatest in the vicinity of the well.
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c. Combined Artesian and Gravity Flow. When drawdown of the potentio-
metric surface becomes large near the well, combined gravity and confined con-
ditions can occur (figure 7-2c).

d. Flow to Well Groups (Method of Superposition). The piezometric sur-
face h caused by discharge from a group of wells can be determined by super-
imposing the solution for the individual wells given by either equation 7-3 or
7-6. For multiple wells, flow cannot be idealized by concentric cylinders and
the problem must be stated in terms of the plan coordinates x and y
(figure 7-3b). By noting that for a well located at

a general well equation can be written as

(7-8)

where

= potential required at point (x,y) to sustain a discharge Qi from
a well at

= hi (confined flow)

= (unconfined or gravity flow)

qi = intensity factor

( confined flow)

(unconfined or gravity flow)

Ci = constant

The head distribution can be determined by summing the individual
As the sum of the constants Ci is a constant, the multiple well

equation can be written as

(7-9)

where n is the number of wells. The constant is determined from a known
value of at a specified location. For example, the superposition formula
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a. FLOW BETWEEN TWO WELLS

b. COORDINATE SYSTEM FOR FLOW TO MULTIPLE WELLS

Figure 7-3. Flow to multiple wells (adapted from John Wiley

and Sons164)
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for the wells shown in figure 7-3 would be

At a distance re from both wells h(x,y) = H . The constant term is found
to be

Substituting the above equation into equation 7-9, the well formula for two
wells becomes

e.   Hydrologic Boundaries (Image Well Method). When there are hydrologic
boundaries within the radius of influence of the well, equations 7-3 and 7-7
are no longer valid. Examples of boundaries are:

(1) A stream or river which can be idealized as a line source of equal
potential.

(2) A rock bluff line at the edge of an alluvial fill valley which can
be idealized as an impervious boundary.

The superposition of solutions (equation 7-9) can be used to analyze the flow
near a boundary by introducing an artificial device called an image well. An
image well is identical to the actual well and located symmetrically on the
opposite side of the boundary. The superimposed effect of the real and image
well for an infinite well is identical to the influence of the real well and
boundary. If the real well is a pumping well then a recharging image well is
used to represent boundaries such as rivers and a pumping image well is used
to represent an impervious barrier. For either case, the absolute value of
the flow Q for the image well is equal to that of the real well. For
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example, the head distribution created by a discharging well in the vicinity of
a river is identical to that created by the combined influence of a recharge
and discharge well (see figure 7-4). The head distribution created by the
discharge well in an infinite confined aquifer is given by

and by the image recharge well in the infinite aquifer

By superposition, the head distribution for the true actual problem is

(7-10a)

(7-10b)

(7-11)

Note that at the river rI = rR and Thus, constant = H , the

head at the river. Substituting the constant term into equation 7-11, the
formula for a single well near a recharge boundary is

To describe the head distribution for confined flow near an impervious boundary
an image discharge well is used (figure 7-4b), By the procedure used above, h
would be obtained as

(7-12)
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a. IMAGE WELL ANALYSIS OF DISCHARGE WELL NEAR
RECHARGE BOUNDARY (RIVER)

b. IMAGE WELL ANALYSIS OF DISCHARGE WELL NEAR
IMPERMEABLE BOUNDARY (ROCK BLUFF)

Figure 7-4. Application of image well method for analysis of flow

near boundaries (courtesy of Illinois State Water Survey
287

)
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The head at the impervious boundary is unknown, thus additional information is
needed to determine the constant. Note that when rR and rI are both equal
to the radius of influence that h = H . Thus

(7-13)

The image well method can also be applied to problems involving multiple
boundaries. For example, a common geologic situation involving multiple
boundaries would be a discharge well pumping from an alluvial terrace located
between a river and rock bluff (figure 7-5). In this case, the image well for
the river would have a second image well with respect to the rock bluff, which
in turn would have an image with respect to the river and so on. A similar
progression of image wells would be needed for the impermeable barrier.
Eventually, the location of each added-image well extends beyond its radius of
influence re from the pumping well and has no practical influence in the
solution.

7-4. Special Conditions. Although the simple well formula (equation 7-8) is
often used to analyze flow problems, it describes a relatively idealized con-
dition that is found rarely in practice. It is generally desirable to con-
sider the effects of partial penetration of wells, sloping aquifer, and
stratification of water bearing units in the analysis.

a. Partially Penetrating Wells. In deriving equations 7-3 and 7-7 it
is assumed that the flow lines are horizontal at the entrance of the well.
This assumption is valid only if the well completely penetrates the water
bearing strata. An approximate solution for flow to a well partially pene-
trating a confined aquifer was developed by Muskat (1946). The head can be
computed from

(7-14)

where C
1

and C
2

are constants to be determined from boundary conditions

is a function of the radius from the well (Warriner and Banks 1977).
The expression for given by Muskat (1946) was based on simplifying assump-
tions. Duncan (1963) and Banks (1965) assessed its validity from electrical
analogy model studies and developed a more accurate expression for The
alternative empirically determined relationship for developed by Duncan
(1963) is given in figure 7-6. The constants C1 and C2 are determined
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b. SECTION
a. PLAN

c. PRIMARY IMAGE
WELLS TO ACCOUNT FOR
INFLUENCE OF BOUNDARIES
ON REAL WELL

d. SECONDARY IMAGE WELLS TO
ACCOUNT FOR INFLUENCE OF
BOUNDARIES ON PRIMARY IMAGE
WELLS

Figure 7-5. Multiple image wells for a two-boundary problem
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Figure 7-6. Beta function curve (from Warriner and Banks
124

)
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from the boundary conditions at the well and at the radius of influence as

(7-15)

where

hw = total head at well (L)

= value of at well radius rw (dimensionless)

H = total head at radius of influence re (L)

The well discharge can be determined by using an empirically determined shape

(7-16)

with

where

b. Flows to Groups of Partially Penetrating Wells. An empirical method
developed by Warriner and Banks (1977) provides a means to modify the rela-
tionship obtained by superimposing solutions for individual fully penetrating
wells for the effects of partial penetration. First, the head at each well is
computed from the assumption that they fully penetrate the aquifer:

(7-17)

with
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where

hj = head at well j (L)

c = constant of integration (L)

Qi = discharge from well i (L3/T)

k = coefficient of permeability (L/T)

B = aquifer thickness (L)

a = constant (L)

rij = distance between well i and well j (L)

rwj = radius of well j (L)

N = number of wells in group

In addition, the head at a point on the source boundary is given by:

where H is the head at the source and ris is the distance between

and the source. The drawdown at each well is computed from combining
equations 7-17 and 7-18

well i

with rjj = rwj .

(7-18)

(7-19)

Equation 7-19 gives the drawdown for each well within a group of fully
penetrating wells. The values of Qi required to cause the drawdown

can be determined by solving the system of N equations (7-19) for the N
unknowns Qi . As for the single well, a shape factor can be defined as:

(7-20)
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where is the shape factor for each well within a group.
factor can be corrected to account for partial penetration by

This shape

(7-21)

By replacing in equation 7-16 with the flow from the well group is
given as

(7-22)

The computations required to evaluate equations 7-19 through 7-22 are straight-
forward though they are time consuming for large well groups. Warriner and
Banks (1977) provide a FORTRAN code to compute discharge and drawdowns for
partially penetrating well groups within an arbitrarily shaped source boundary.

c. Wells in Sloping Aquifer. If the regional potentiometric surface
has a significant slope, the effect of superimposing the initial regional
gradient on the well drawdowns must be considered. For example, when pumping
from floodplain locations, the existing piezometric gradient from upland areas
to the river may be as great as those caused by pumping from the well. The
significant parameters for confined flow to a single well are shown in
figure 7-7. At a large distance from the well, the regional flow net would
not be affected. All flow into the well would be contained within the stream
lines separated by the dimension f . Thus by Darcy's law for one-dimensional
flow

where

Q = discharge from well (L3/T)

k = permeability (L/T)

h1 = total head (L) for regional flow alone

(7-23)

7-16



EM 1110-2-1901
30 Sep 86

x = coordinate selected to be parallel to initial regional flow (L)

B = aquifer thickness (L)

f = width of flow lines enclosing all flow to well (L)

Figure 7-7. Superposition of well drawdown on regional gradient
(courtesy of International Institute for Land Reclamation and

Improvement199)
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The corresponding differential equation for the well would be

(7-24)

where

= total head due to flow to well

At a distance Xe downgradient from the well, a groundwater divide develops

(culmination point) at which

In view of equations 7-23 and 7-24

or

By substitution of equation 7-26 into equation 7-23

(7-25)

(7-26)

(7-27)

By integrating equations 7-24 and 7-27

(7-28)
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and superimposing the effects

(7-29)

The distance Xe can be removed from the expression by substitution of
equation 7-27

(7-30)

where i = the regional slope of the aquifer.

For conditions of unconfined flow, the regional gradient would be defined by a
parabola

which when combined with the well equations for unconfined flow gives

(7-31)

d. Layered Aquifers. Natural soils often occur in layers and a well
may penetrate units having different permeabilities. If flow to the well is
horizontal, the simple well equations can be used by assigning an average
value of permeability given by

where

km = horizontal permeability of layer m

dm = thickness of layer m

d = total thickness of layers

7-19
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Note that the permeability determined from a field pumping test is an average
of all units penetrated by the pumping well. A case where vertical flow can be
important is shown in figure 7-8. The discharging well is pumping from a

Figure 7-8. Flow to well with significant vertical flow through confining

layer (courtesy of John Wiley and Sons
164

)

permeable unit overlain by a less permeable unit through which significant
vertical flow can occur. The flow to the well is given by

(7-33)

where

H = original total head (L)

h = total head at distance r from well at steady state condition
(L)

Q = discharge rate (L3/T)

L = (leakage factor) (L)

B = thickness of aquifer

C = B'/k' (L)

B' = thickness of overlying low permeability unit (L)
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k ' = permeability of overlying low permeability unit (L/T)

= Hankel function (tabulated in table 7-1) (dimensionless)

7-5. Nonsteady State Flow. Nonsteady state flow may arise in several ways.
When pumping is started, time is required to establish a virtually steady state
condition. Flow during this period must be assumed to be nonsteady state. If
pumping occurs intermittently, a steady state condition may not be established.
Also, if large fluctuations occur at the source, potential steady state flow
conditions are not maintained. The steady state condition can be viewed as the
end condition that is reached after pumping for a long time period. In the
design of a well system for seepage control, it is generally adequate to
consider only the steady state condition. However, the determination of
coefficient of permeability from test data often requires analysis based on
nonsteady state condition. The duration of many well tests is too short to

Table 7-1. Values of Ko r/L for Selected Values of r/L to

Evaluation Equation 7-33 (a)

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

4.721

4.028

3.623

3.336

3.114

2.933

2.780

2.647

2.531

2.427 0.421

1.753 0.114

1.372 0.035

1.114 0.011

0.924 0.004

0.777 0.000

0.660 0.000

0.565 0.000

0.487 0.000

f = 10-2 f = 10-l

Example: = 0.5 , f = 10-1 , K(0.5) = 0.924

f = 1.0

(a) Prepared from more extensive tables presented by Kruseman and De Ridder
(1970).
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reliably establish the steady state condition. Also, in practice, hydrologic
boundaries may be present within the steady state radius of influence. In
either case the use of the steady state flow equations could lead to substan-
tial error in determining the permeability.

a. Nonsteady State Confined Flow. Theis (1935) developed the following
relationship for nonsteady state flow in a confined aquifer (Davis and DeWeist
1966):

(7-34)

where

Q = constant discharge rate (L3/T)

k = permeability (L/T)

B = thickness of aquifer (L)

W(u) = function given in table 7-2

The parameter u is given by

(7-35)

where

r = radius from well (L)

S = storage coefficient (dimensionless)

t = time from start of pumping (T)

The storage coefficient S represents the amount of water removed from stor-
age as a result of consolidation of the aquifer and expansion of water in
response to the decline in head. Physically S is given by

(7-36)
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Table 7-2. Values of W(u) for Selected Values of 1/u

to Evaluate Equation 7-34 (a)

1 1 W(u)
f u f = 1.0 f = 2.0 f = 8.0

10-1 0.000 0.001 0.146

1 0.219 0.600 1.623

10 1.823 2.468 3.817

102 4.034 4.726 6.109

103 6.332 7.024 8.410

104 8.633 9.326 10.71

105 10.94 11.63 13.02

106 13.24 13.93 15.32

107 15.54 16.23 17.62

108 17.84 18.54 19.92

10g 20.15 20.84 22.22

1010 22.45 23.14 24.53

1011 24.75 25.44 26.83

1012 27.05 27.75 29.13

1013 29.36 30.05 31.44

1014 31.66 32.35 33.74

Example : u = 0.005 , = 200 , f = 2 , W(u) = 4.726

(a) Prepared by WES.
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where

= mass density fluid (m/L3)

g = acceleration of gravity (L/T2)

B = thickness of aquifer

= bulk compressibility of aquifer (LT2/M)

n = porosity (dimensionless)

= bulk compressibility of fluid (LT2/M)

The determination of the aquifer properties kb and S from equation 7-34
requires a complete drawdown versus time history for each observation
piezometer. The Theis method for data analysis is based on the logarithmic
representation of equations 7-34 and 7-35

From the equations above it is seen that if Q is constant that log(H - h)

varies with log(r2/t) in the same way as log [W(u)] varies with log (u)
regardless of the units used. Therefore, it should be possible to superimpose
the data curve on the theoretical curve because the two curves are offset from
each other only by the constant terms log and log S/4kB . By deter-
mining the value of the offsets from the superimposed curves, kb and S can
be determined. The computation consists of the following steps:

(1) A plot is made of W(u) (log scale) versus u (log scale). This
plot is referred to as the type curve.

(2) For each observation well, a plot is made of drawdown H - h (log

scale) versus (log scale).

(3) Superimpose the test data over the type curve in such a way that
the drawdown data best fit the type curve (figure 7-9). The coordinate axes
of the two curves should be kept parallel.

(4) Determine the values W(u) , u , H - h , and r2/t from an
arbitrarily chosen matching point on the two curves.
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Figure 7-9. Use of type curve for analysis of nonsteady state flow

(courtesy of John Wiley and Sons
164

)

(5) Compute the value of kB from equation 7-34 using the matching
point value of H - h and W(u) . Compute the value of S from equa-

tion 7-35 using the matching point values of u and r2/t combined with the
previously computed value of kB . The above procedure is carried out for
each observation well. Ideally, the computed values of kB and S should be
the same for all observation wells. Differences in the computed values may be
caused by geologic variations in the aquifer and hydrologic boundaries not
accounted for in the analysis.

b. Simple Method for Coefficient Determination (Jacob's Method). Jacob
(1950) introduced a simplification to the determination of kB and S by
noting that for small values of u (small r and/or large t) equation 7-34
reduces to (Davis and DeWeist 1966)
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(7-37)

Equation 7-37 can be written in a form convenient for graphical solution by
substituting equation 7-35 and writing in terms of base 10 logarithms:

(7-38)

From equation 7-38 it is seen that the relationship between drawdown H - h
and time t for a particular observation piezometer (r = constant) can be
represented as a straight line on a plot of H - h versus log t

(figure 7-10). The slope of the line is equal to Also, the time,
to , corresponding to H - h = o gives

which can be used to determine S . An alternative analysis consists of plot-
ting H - h versus log r . The following relationship can be obtained by
rearranging the term in equation 7-38.

Equation 7-39 defines a straight line on a plot of H - h versus r

(figure 7-10b). The slope of the line is - and can be used to

determine kb . The line intersects the H - h = o axis at ro . This
intercept can be used to determine S from

(7-39)

Note that ro represents the radius of influence for the well at time equals

t . Thus the radius of influence for the steady state condition re is equal

to ro as t tends to infinity. This implies that the radius of influence
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a. One observation well

b. Simultaneous observations

Figure 7-10. Use of Jacob approximation for nonsteady state flow

(courtesy of John Wiley and Sons 164
)
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expands indefinitely and cannot be defined. However, the value of r
e

selected has a relatively small influence on computed drawdowns near the well
and equation 7-39 can be used to determine reasonable values for re .

Yield).
c. Nonsteady Unconfined Flow with Vertical Gravity Drainage (Delayed

Initial response (generally after first few minutes of pumping) is
given by (Kruseman and DeRidder 1970)

(7-40)

where

SA = storage coefficient for instantaneous release of water from
storage

W(uA , r/B) = Boulton well function (figure 7-11a)

r/B = formation constant to be determined from piping test data

Later time response is given by

where

Sy = specific yield

W(uy , r/B) = delayed yield well function

The application of equations 7-40 and 7-41 through use of a type-curve is
similar to that of equation 7-34. The following should also be noted:

(7-41)

(1) Type curves for several values of r/B should be plotted. The
curve giving the best fit to the initial time-drawdown data is used to
estimate r/B .
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a FAMILY OF BOULTON TYPE CURVES: W (UA,
1/Uy FOR DIFFERENT VALUES OF r/B.

r/B) VERSUS 1/uA AND W (Uy, r/b) VERSUS

a. Family of Boulton type curves:
W(Uy/r/b) versus 1/Uy

W(UA , r/B) versus 1/uA and
for different values of r/B

b. Boulton's delay index
curve

Figure 7-11. Type curves for Boulton's analysis of nonsteady unconfined
flow with delayed yield (courtesy of International Institute for Land

Reclamation and Improvement199)
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(2) The time-drawdown data overlay may be moved to obtain the best fit
for the latter time-drawdown data. Both initial time and latter time fits
should give the same value of r/B and kB .

(3) Eventually, the effects of vertical gravity drainage become negli-
gible and the latter time curve merges with the Theis curve. The time-
coordinate where the two curves merge is determined from Boulton's delay-index
curve (figure 7-11b).

(4) A number of type-curve solutions to the problem of nonsteady uncon-
fined flow to wells have been developed (Fetter 1980). For example, Neuman
(1975) presented a type-curve method similar to Boulton's that accounts for
anisotropy of the aquifer.

d. Nonsteady Confined Flow with Vertical Drainage Through Confining
Layer (Leaky Aquifer). The leaky aquifer equation for nonsteady flow is based
on the assumptions that flow to the well is horizontal and vertical flow is
restricted to seepage through the confining layer. These assumptions are
identical to those made for the steady state case described by equation 7-33.
The drawdown is given by

where

r2S
u=4kBt

r = radius from well (L)

S = storage coefficient (dimensionless)

k = permeability (L/T)

t = time from start of pumping (T)

L = leakage factor (L) =

B = thickness of aquifer (L)

B ' = thickness of confining unit (L)

k' = permeability of confining unit (L/T)

(7-42)

W(u , r/L) = well function given in figure 7-12
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The application of the type curve method for the leaky aquifer problem is simi-
lar to the application to the delayed yield problem. The time-drawdown data
are matched to the standard type curve with the curve giving the best fit being
used to estimate r/B .

e. Nonsteady Unconfined Flow with Little Vertical Drainage. If the
delayed response component of the drawdown is small, the Theis equation
(equation 7-34) can be used to analyze the flow by inserting a "corrected"
drawdown into the flow equation. The corrected drawdown is given by

(7-43)

f. Nonsteady Flow with Hydrologic Boundaries. The method of super-
position presented for steady-state flow problems (equation 7-9) is applicable
to nonsteady flow problems. Therefore, the image well method can be used to
investigate the effects of hydrologic boundaries. For example, the image well
analysis for a discharging well near a river (recharge boundary) is (Davis and
Dewiest 1966)

where

rR = radius from real well (L)

rI = radius from image well (L)

k = coefficient of permeability (L/T)

S = storage coefficient (dimensionless)

(7-44)

B = aquifer thickness (L)

t = time from start of pumping (T)
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Note, then, when the function W(u) can be replaced with a logarithmic
approximation, as in the Jacob's method (equation 7-37), equation 7-44 can be
approximated as

(7-45)

From equation 7-45 it is seen that as u becomes small, flow becomes virtually
steady state (compare equation 7-45 with the steady state case, equation 7-11).
Thus the presence of a recharge boundary in an aquifer tends to shorten the
time needed to reach steady state (Davis and Dewiest 1966).
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